Nano Magazine - Latest Nanotechnology News

View Original

Graphene sensor rapidly detects opioid metabolites in wastewater

The unique properties of the atom-thick sheet of carbon, known as graphene, enabled a new penny-sized, multiplexed bio-sensor that's the first to detect opioid byproducts in wastewater, a team of researchers from Boston College, Boston University, and Giner Labs report in the latest online edition of the journal ACS Nano.

The novel device is the first to use graphene-based field effect transistors to detect four different synthetic and natural opioids at once, while shielding them from wastewater's harsh elements. When a specific opioid metabolite attaches to a molecular probe on the graphene, it changes the electrical charge on the graphene. These signals are easily read electronically for each probe attached to the device.

"This new sensor we've developed is able to rapidly, cheaply, and easily measure opioids in wastewater," said Boston College Professor of Physics Kenneth Burch, a lead author of the report. "Its sensitivity and portability would allow for wastewater-based epidemiology at the local scale—as specific as block-by-block or dorm-by-dorm—while ensuring privacy."

The device responds to a primary challenge of the opioid epidemic: determining the amount and kind of drugs being used in a community. Privacy concerns and limited resources are barriers to testing large populations. An alternative approach is wastewater-based epidemiology, similar to testing wastewater to measure community levels of coronavirus infection during the pandemic.

"Wastewater testing is an emerging strategy that can defeat limitations and stigma associated with individual drug testing, and it provides a more objective measure of drug use at neighborhood level," said Giner Labs Vice President for Advanced Materials Avni Argun, a co-leader of the project. "While wastewater testing has been widely conducted in Europe, only a few studies exist in the US. Rapid and portable nature of the team's device would allow wide scale population testing at low cost and high geographical resolution."

The work of Argun's team at Giner Labs, in Newton, Mass., is funded by the NIH's National Institute on Drug Abuse, which is working with researchers to develop smart city tools that would assist public health surveillance programs addressing drug use and abuse. Additional funding for the project came from the National Science Foundation, National Institutes of Health, and the Office of Naval Research.

Source. Image: DedMityay/shutterstock